

乱れた超伝導薄膜における超伝導ー絶縁体転移

Superconductor-insulator transition in disorderd superconducting thin films

キーワード: 超伝導、SI転移 /key words: superconducting, SI transition

市川 聡夫 教授 博士 (理学) / Fusao ICHIKAWA Prof., Dr. Sci.

基礎科学部門 物理科学分野 / Research Field of Physics

E-mail: ichikawa@kumamoto-u.ac.jp *Tel*: 096-342-3459 *URL*: http://crocus.sci.kumamoto-u.ac.jp/physics/super/Index.html

● MoN薄膜における超伝導ー絶縁体転移と局在: MgO基板上に反応性DCスパッタリングで成膜したMoN薄膜における超伝導ー絶縁体転移(SIT)を研究している。ノーマル面抵抗 R_{sq} の増加に対する T_c の減少は局在理論であるFinkel'stein式で良く説明できる。臨界面抵抗 R_c は R_c ~ 2 Kと予測できる。 R_c < R_{sq} < R_q の範囲では R_{sq} (刀)は熱活性型ホッピング特性を示す。熱ゆらぎによる過剰伝導度G (刀)はAslamazov-Larkin項とペアブレーキングパラメータB を用いたMaki-Thompson補正項の和で解析した。磁場によるSITもMoN薄膜で観測された。SIT点の近傍で全ての R_{sq} (H, 刀データはスケーリング変数の関数としてのプロットにおいて二つのカーブにのった。今回得られた臨界指数値Zv ~ 0.6は(2+1)次元古典XYモデルの数値シミュレーションから得られた値に近い。

Superconductor-insulator transition and localization in MoN thin films: We have studyed the superconductor-insulator transition (SIT) in MoN films by reactive DC sputtering method onto MgO substrates. It is indicated that the T_c depression with increase of the normal state sheet resistance $R_{\rm sq}^{\rm N}$ was well explained by the Finkel'stein formula from the localization theory. The critical sheet resistance R_c is estimated to be $R_c \sim 2$ K. It is found that the $R_{\rm sq}(T)$ of films in the region $R_c < R_{\rm sq}^{\rm N} < R_Q$ shows a weak localization characteristic. However the $R_{\rm sq}(T)$ of films in the region $R_{\rm sq}^{\rm N} > R_Q$ shows the thermally activated hopping characteristic. The excess conductance $\sigma'(T)$ due to thermal fluctuation has been analyzed by the sum of the Aslamazov–Larkin and Maki–Thompson correction terms with use of the pair breaking parameter δ . The magnetic field-tuned SIT was observed in the MoN films. At the vicinity of the SIT point, all the data $R_{\rm sq}(H,T)$ collapse onto two separate curves on plots as a function of the scaling variable. The present value of $zv \simeq 0.6$ is close to the value obtained from the numerical simulation of the (2+1)-dimensional classical XY model.

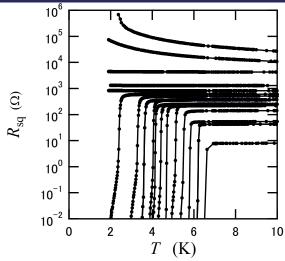


Figure 1 $R_{sq}(T)$ curves in MoN thin films.

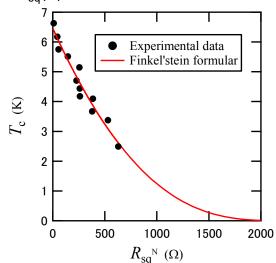


Figure 2 R_{sq}^{N} dependence of T_{c} for MoN films. The solid line is calculated from Finkel'stein formular.